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a b s t r a c t

The use of chemometric methods such as response surface methodology (RSM) based on statistical design
of experiments (DOEs) is becoming increasingly widespread in several sciences such as analytical chem-
istry, engineering and environmental chemistry. Applied catalysis, is certainly not the exception. It is clear
that photocatalytic processes mated with chemometric experimental design play a crucial role in the abil-
eywords:
SM
ptimization
xperimental design
hotocatalysis

ity of reaching the optimum of the catalytic reactions. The present article reviews the major applications
of RSM in modern experimental design combined with photocatalytic degradation processes. Moreover,
the theoretical principles and designs that enable to obtain a polynomial regression equation, which
expresses the influence of process parameters on the response are thoroughly discussed. An original
experimental work, the photocatalytic degradation of the dye Congo red (CR) using TiO2 suspensions and
H2O2, in natural surface water (river water) is comprehensively described as a case study, in order to
eview provide sufficient guidelines to deal with this subject, in a rational and integrated way.
© 2009 Elsevier B.V. All rights reserved.
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. Introduction

Quality problems of groundwater and freshwater, have gen-
rated several studies in last years dealing with catalytic water
reatment processes, called advanced oxidation processes (AOPs).
hese chemical-oxidative processes, are characterized by the gen-
ration of hydroxyl radicals, one of the strongest known oxidant.
herefore, it is possible for the hydroxyl radical to oxidize and min-
ralize almost every organic molecule into CO2 and inorganic ions.
OPs such as H2O2/UV processes, Fenton and photo-Fenton cat-
lytic reactions [1–3] and TiO2 mediated photocatalysis [4–6] have
een widely used to destroy organic pollutants including phar-
aceutical active compounds (PhACs) and personal care products

PCPs) [7–10].
Heterogeneous photocatalysis takes advantage of semiconduct-

ng metal oxides that can be used on photo-assisted reactions either
uspended in the water effluent to be treated, or immobilized on
arious types of supports. TiO2-based photocatalysis appears as
he most emerging destructive technology. The key advantage of
he former is that it can be carried out under ambient conditions
atmospheric oxygen is used as oxidant) and may lead to complete

ineralization of organic carbon into CO2. Moreover, TiO2 pho-
ocatalyst is largely available, inexpensive, non-toxic and shows
elatively high chemical stability. Finally, the TiO2 photocatalytic
rocess, is receiving increasing attention because of its low cost
hen using sunlight as the source of irradiation.

The utilization of combined photocatalysis and solar technolo-
ies may be developed to a useful process for the reduction of water
ollution by micropollutants (e.g. PhACs, PCPs, pesticides and dyes)
ecause of the mild conditions required and their efficiency in the
ineralization.
In this context, the application of photocatalytic procedures for

emediation have been mostly studied in terms of determination of
eaction kinetics, the reaction mechanisms involved in the process
s well as of the identification of major transient intermediates.
ost of the studies dealing with kinetics make use of the tradi-

ional one-factor-at-a-time (OFAT) approach, examining the effect
f parameters such as initial concentration of target compound,
egradation time, catalyst dose and characteristics, pH, tempera-
ure, UV light source and intensity.

If the factors involved in the process are independent (which
s rarely the situation), the most common practice is OFAT while
olding all others constant. However, the result of this univari-
te analysis shows inadequate optimization towards response(s).
oreover, OFAT approach is costly in sense of time and reagents,

nd not that efficient. There is now increasing recognition that
ereditary malpractice ought to be replaced by soundly based
hemometric methods such as response surface methodology
RSM) based on statistical design of experiments (DOEs). Such
tatistical analyses are more efficient, since they account for inter-
ction effects between the studied variables and determine more
ccurately the combination of levels that produces the optimum of
he process. It is, therefore, clear that the chemometric experimen-
al design in photocatalytic processes play crucial role in the ability
f reaching the optimum of the catalytic reaction. The importance
nd theoretical concepts behind the optimization through experi-
ental design as well as RSM in research and development efforts

ave been thoroughly discussed in a number of informative arti-
les [11–21] and the sequential steps of RSM are also highlighted
n subsequent sections of this study. According to our knowledge,
here are no general monographs or reviews to emphasize the

road nature of photocatalytic processes mated with chemomet-
ics, the wide range of approaches that can be employed and the
reat impact on the data obtained.

In the present study an attempt was made to emphasize on
he study of a dye TiO2-mediated degradation capitalizing on the
us Materials 175 (2010) 33–44

potency of chemometrics. For this reason, a thorough step-by-step
chemometric approach is discussed to optimize and validate the
catalytic processes. At the same time, this paper reviews signifi-
cant applications based on design of experiments and optimization
techniques in the field of photocatalysis. Moreover, an original
experimental work, with regards to photocatalytic degradation of
the dye, Congo red in river water as a case study is woven into the
text, giving the guidelines to deal with this subject, in a rational
way.

Congo red (CR) (sodium 3,3′-(1E,1′E)-biphenyl-4,4′-diylbis
(diazene-2,1-diyl)bis(4-aminonaphthalene-1-sulfonate)) is one of
the most frequently used secondary diazo dye. Benzidine is a toxic
metabolite of Congo red, which causes cancer of the bladder in
humans [22]. Congo red effluents are highly colored, have low bio-
logical oxygen demand (BOD) and high chemical oxygen demand
(COD) while they contain high amounts of dissolved solids [23].

2. Building a response surface methodology

2.1. Factor screening experiments

The first step during the development of an application, experi-
mental work or research, in general, is the definition of the problem.
Generally, the process of specifying the problem is an innately pro-
cess from abstraction and approximation. Therefore, one should
consider the whole procedure of designated work, including all the
critical steps, raw materials, equipment, costs and time in order to
obtain a holistic view of the problem. Afterwards, the selection of
appropriate response(s) or output(s) is important since it should
take into consideration the sources of error, ways of minimizing
it and of course the ability to follow the change in response(s), in
course of time.

In photocatalytic processes for example, possible response(s)
could be, percent of degradation, and decolorization rate of degra-
dation or even degree of mineralization and/or detoxification of
the sample. On the other hand, variables that affect the response
could be, initial concentration of target compound, illumination
time, catalyst dose and/or characteristics, pH, temperature, UV
irradiance, and electron acceptors. For a given photocatalytic reac-
tion, it is difficult to infer which of the above variables would
have a significant effect on the process, since their impact is inter-
dependent.

Screening test is the most appropriate experimental proce-
dure to discover suitable independent variables or screening out
insignificant variables among others, in order to identify those
that may display a significant effect on the selected response. The
well-known Plackett–Burman (two-level fractional design) or full
factorial design is usually employed as screening test [24].

2.2. The path of steepest ascent/descent

The main objective of the experimenters is to estimate the cur-
rent levels of factors that are near to optimum or not. If current
levels of independent variables are far from optimum conditions,
then the location of the region of factor levels that produce opti-
mal conditions is the next step. The method of steepest ascent is
followed to move the experimental region of a response in the
direction of the maximum change toward the optimum. On the
other hand, the method of steepest descent is followed when min-
imum response is desired. The step size is determined usually by

prior knowledge of the process, or other practical features of the
studied system. The lack-of-fit test compares residual error (from
model error) to pure error (from replicated experiments or from
central points). If the model does not fit the data well, lack-of-fit
will be significant. Besides, if significant curvature or lack-of-fit is
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etected in the first-order model, a second-order model should be
sed for solving real response surface problems.

.3. Choice of design for RSM

The most important part before applying the RSM methodology,
s the selection of appropriate design of experiment (DOE), that
ave a large influence on the building of response surface and thus,

ts precision on the prediction. Simply, the purpose of DOE is the
election of the experimental points at which the response should
e evaluated. The common DOEs used in RSM are.

.3.1. Full three level factorial design
Three-level full factorial designs are designed, in which, factors

an take on three values: low, medium or center and high. Gen-
rally, if midpoints or center points are added on 2k full factorial
esign then it will be 3k full factorial design, where k is the number
f factors but the main disadvantage of this design (3k) is the need
or large number of experimental runs, which produced unwanted,
igh-order interactions. Therefore, a 3k full factorial design will be
ore appropriate if factors are less than five.

.3.2. Central composite design (CCD)
CCD is the most frequently used five level fractional facto-

ial designs for the construction of second-order response surface
odel. This design consists of three types of points: cube points that

ome from factorial design, axial points and center points, there-
ore total number of experiments (N) needed can be determined
y N = 2k + 2k + C0, where k is the number of factors, 2k is the cubic
uns, 2k is the axial runs and C0 is the center point’s runs. The center
oint of CCD is often used to calculate experimental error. The dis-
ance of axial points from the center points are denoted by ˛ that
s depend on the number of factors chosen for the experiment. The

ain drawback of using CCD is time consuming design with large
umbers of factors.

.3.3. Doehlert design
This design is for heterogeneous levels of variable that allows a

ree choice of the factors to be assigned to a large or a small number
f levels. Besides, Doehlert design needs small number of exper-
mental runs even with large number of factors. The number of
xperiments required (N) is given by N = k2 + k + C0, where k is the
umber of variables and C0 is the number of center points. More
etails about Doehlert design are also well described by several
rticles [15,17].

.3.4. Box–Behnken design
Box–Behnken design is for three levels of variables that are

venly spaced. The number of experiments required (N) is given
y N = 2k(k − 1) + C0, where k is the number of variables and C0

s the number of center points. The main advantage of using
ox–Behnken design is that this design avoids extreme conditions
f experiments. Ferreira et al. [14] discuss the use and applica-
ion of Box–Behnken design in different fields of chemistry as an
ptimization procedure of analytical methods.

After the selection of the appropriate experimental design, the
omination of levels of the variable should be handled carefully,
ased on the path of steepest ascent/descent, preliminary exper-

ments, prior knowledge of the process attributes or literature
eview and certain instrumental limitations.
.4. Sequential mathematical model fitting

It is important to fit a mathematical model equation in order
o describe the behavior of the response in the experimental
us Materials 175 (2010) 33–44 35

domain by selected DOE. As RSM is mainly based on second-
order polynomial model, the experimenters should sequentially
fit the first-order model to second-order polynomial model. The
first-order model will be applicable when the approximation of
true functional relationship between response and the set of inde-
pendent variables has a relatively small region of interest. In
other sense, first-order model uses low-order polynomial model
divulging some part of the response surface. Generally, this model is
appropriate for describing a flat surface, according to the equation:

R = ˇ0 +
∑

ˇiXi + ε (1)

In Eq. (1), R is the response, ˇ0 is the constant term, ˇi represents
the coefficients of the linear parameters, Xi represents the variables
and ε is the random error or noise to the response. Sometimes, it is
called main-effects model because it includes only the main effects
of the variables.

If interaction terms are included (called factor interactions or FI
model), the first-order model can then be represented as follows:

R = ˇ0 +
∑

ˇiXi +
∑

ˇijXiXj + ε (2)

where ˇij represents the coefficients of the interaction parameters
Xi and Xj and i < j.

If first-order or FI models are not adequate to the representa-
tion of true functional relationships with independent variables,
then a more highly structured, flexible and diversified functional
forms model, such as second-order model, may be studied in
order to locate the optimum point. The second-order model can
be expressed as follows:

R = ˇ0 +
∑

ˇiXi +
∑

ˇijXiXj +
∑

ˇiiX
2
i + ε (3)

where ˇii represents the coefficients of the quadratic parameter
and i < j.

In order to determine the adequacy of the first-order and
second-order model, an experimenter can opt for examining the
normal plots, the residual analysis, the main and interaction effects,
the contour plot, and analysis of variance (ANOVA) statistics (F-test,
t-test, R2, the adjusted R2, and lack-of-fit).

2.5. Optimization

The optimization is the way of adjusting control variables in any
process to find out the suitable factors levels that return the best
possible outcome (response). The traditional “trial-and-error” or
OFAT approach for optimization has lots of drawbacks in relation
to the absence of interactions effect as well as the efficiency to pre-
dict the true optimum. Generally, there are two different strategies
for optimization: (a) simplex optimization and (b) response surface
methodology (RSM). Simplex optimization is a stepwise strategy of
the experiments, which are performed one by one. The exception
is the starting simplex, in which all experiments can be run in par-
allel. An exact optimum can only be determined by RSM, while the
simplex method will encircle the optimum [11]. As our objective is
to optimize process parameters using RSM, we will probe into this
optimization methodology.

The RSM is mainly based on second-order models; so it illus-
trates quadratic surfaces such as minimum, maximum, ridge and
saddle. If the second-order model is found to be adequate (Eq.
(3)), then canonical analysis is performed to determine the location
and the nature of the stationary point of the second-order model.

The stationary point is the combination of design variables, where
the surface is at either maximum or minimum in all directions.
If the stationary point is maximum in some direction and mini-
mum in another one, then the stationary point is a saddle point.
When the surface is curved in one direction but is fairly constant
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Table 1
Examples of photocatalytic degradation using RSM.

Compound Photocatalytic
process

Selected variables DOE and optimization
techniques

Analytical
instrument(s)

Ref.

Hydroxybutanedioic
acid

TiO2-coated
fiber-optic/UV

Number of layers,
coating length (cm)

22 full factorial
design + 3 center points

HPLC-UV [39]

Terephthalic acid TiO2 (Degussa
P25)/UV

Irradiation time, TiO2

concentration,
terephthalic acid
concentration

Three-factor central
composite rotatable
design

Fluorescence
spectrophotometer

[40]

Acid Blue 7 Nano-TiO2/UV pH, light intensity, TiO2

concentration
Box–Behnken design UV-

spectrophotometer
[41]

Reactive Red 239 TiO2/UV UV light intensity, the
concentration of TiO2,
initial pH, stirring
speed

24 full-factorial central
composite design
(CCD)

UV-
spectrophotometer

[42]

Reactive Blue 19 TiO2/ZnO/UV pH, amount of catalyst,
dye concentration

Factorial design Spectrophotometer [43]

Indole TiO2/UV Indole concentration,
TiO2 amount,
temperature, flow rate

Central composite
experimental design
(CCD)

UV visible
absorption
spectrometry

[44]

Phenol TiO2/ZnO/UV pH, phenol
concentration, catalyst

23 factorial design Luminescence
spectrometer

[45]

Azo dye Metanil
Yellow

TiO2/UV Dye concentration,
TiO2 concentration, pH,
light flux

Central composite
design face-centered
(CCF)

UV–vis
spectrophotometer

[46]

Phenol TiO2/UV Catalyst (TiO2) size,
TiO2 concentration,
dissolved oxygen
concentration and
phenol concentration

Box–Behnken design
(BBD)

HPLC [47]

Acid dye TiO2 thin
film/UV

According to the
Plackett–Burman
design, the
alcohol-to-titanium
ratio, the
acid-to-titanium ratio,
and the sol–gel
reaction time

Plackett–Burman
design, 23 full factorial
design, simplex
method optimization

UV/vis
spectrophotometer

[48]

Diuron H2O2/Fe(II)/UV Pesticide dose,
hydrogen peroxide
dose, ferrous ion dose
Fe(II)

Box–Behnken design HPLC [49]

Fulvic acid Ti/TiO2/UV pH, potassium
peroxodisulphate
(K2S2O8)
concentration, bias
potential

Box–Behnken design Total organic
carbon analyzer
(TOC)

[50]

Ethylenediaminetetraacetic
acid (EDTA)

TiO2/UV EDTA concentration,
photocatalyst
concentration, pH,
irradiation time

Full factorial and
Doehlert experimental
designs, artificial
neural networks
(ANNs)

UV/VIS-Absorption
spectrophotometer

[51]

Acid Red 14 UV/Fe-
ZSM5/H2O2

Concentration of the
catalyst, molar ratio of
initial concentration of
H2O2 to that of the dye
(H value), initial
concentration of the
dye and initial pH of
the solution

Central composite
design (CCD), artificial
neural networks
(ANNs)

Total organic
carbon (TOC) VCSN
analyzer

[52]

Basic Red 2(BR2) H2O2/UV BR2 concentration, pH
and H2O2

concentration

D-optimal design UV–vis
spectrophotometer

[53]

Carmine (C.I.
Natural Red 4)

H2O2/UV Carmine concentration,
H2O2 concentration,
pH and reaction time

D-optimal design UV–vis
spectrophotometer

[54]

Dyeing wastewater TiO2/H2O2/UV TiO2 and H2O2

concentration
Central composite
design (CCD)

UV–vis
spectrophotometer

[55]

Orange II TiO2/H2O2/UV H2O2 concentration Central composite
design (CCD) and then
optimization through
gradient method of
steepest ascent

UV–vis
spectrophotometer

[56]

Direct Red 28 Fe(II)/H2O2/UV Dyestuff dose (mg L−1),
hydrogen peroxide
dose (mg L−1) and
ferrous ion dose
(mg L−1)

Box–Behnken design UV–vis
spectrophotometer

[57]
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Table 1 (Continued)

Compound Photocatalytic
process

Selected variables DOE and optimization
techniques

Analytical
instrument(s)

Ref.

Diuron and Linuron Fe(II)/H2O2/UV Hydrogen peroxide
dose and iron
concentration

Central composite
design

HPLC system [2]

Alachlor Fe(II)/H2O2/UV Temperature 20–50 ◦C,
iron concentration
2–20 mg/L, illuminated
volume 11.9–59.5% of
total

Central composite
design without star
points

HPLC-UV [58]

Phenol US
(ultrasound)/Fe-
SBA-15/H2O2

Catalyst concentration
ranging from 0.2 to
1.0 g L−1, and hydrogen
peroxide concentration
from 1.19 to 4.76 g L−1

A complete 32 full
factorial experimental
design

TOC Analyzer [59]

2,4-Dimethyl
aniline

Fe3+-
exchanged
zeolite
Y/H2O2/UV

Fe3+ concentration and
H2O2 concentration

Factorial matrices 22

and Doehlert matrices
HPLC [60]

Cu(II) TiO2/UV Catalyst mass, pH, and
reaction time

Factorial design Atomic absorption
flame
spectrophotometer

[61]

Tetracycline TiO2/UV and
ZnO/UV

TiO2 dose and pH; ZnO
dose and pH

Central composite
circumscribed design
(CCCD)

Spectrophotometer [62]

Flumequine Pure TiO2, urea
TiO (u-TiO2)

pH and catalysts dose Central composite
circumscribed

Spectrophotometer
and HPLC

[63]
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TiO (t-
TiO2)/simulated
solar light

n another one, then this type of surface is called ridge system [25].
he visualization optimization of the predicted model equation can
e obtained by the 3D surface response plot and by contour plots
hrough determination of coordinate axes.

Desirability function is a popular and established technique to
oncurrently determine these settings of input variables that can
ive the optimum performance levels for one or more responses.
arrington [26] first developed the desirability function which was

ater modified by Derringer and Suich [27] for specifying the rela-
ionship between predicted responses on a dependent variable and
he desirability of the responses.

The desirability is an objective function (D) that ranges from
ero (low) outside of the limits to one (maximum) at the goal.
he numerical optimization finds a point that maximizes the
esirability function. The characteristics of a goal may be altered
y adjusting the weight or importance of the factors based on
xperimenter’s desire. For several responses and factors, all goals
ransformed into one desirability function:

= (d1 × d2 × d3, ..., dn)1/n =
(

n∏
i=1

di

)1/n

(4)

here di indicates the desirability of the response and n is the num-
er of responses in the measure. According to this, Eq. (4) can be
xtended to

=
[
dv1

1 × dv2
2 × ... × dvn

n

]1/n
, 0 ≤ vi ≤ 1 (i = 1, 2, ..., n),

n

i=1

vi = 1 (5)
here di indicates the desirability of the response yi (i = 1, 2, 3, . . ., n)
nd vi represents the importance of responses that varies from the
east important (vi = 1) to the most important (vi = 5). So, the maxi-

um overall desirability function D, depends on the vi (importance)
alue.
design(CCCD)

Other, less frequently used manners to reach optimal conditions
encompass artificial neural networks (ANNs). ANNs gather their
knowledge by detecting the patterns and relationships in data and
learn (or are trained) through experience. They have the ability to
approximate virtually any function in a stable and efficient way and,
for this reason, they can be applied to quantify a nonlinear relation-
ship between causal factors and responses by means of iterative
training of data obtained from a designed experiment [19].

2.6. Confirmation study

The confirmation study is performed under optimized condi-
tions and should compare this result with the predictions. If the
results (response) of confirmation experiments agree with the pre-
dictions, then the developed model is robust and insensitive to
external noises or tolerances by changing factors levels.

3. Applications of DOE in photocatalytic process

Although photocatalytic oxidation process is an emerging tech-
nology used for the destruction of hazardous compounds, in the
last three decades, few reports dealing with the application of
statistical design of experiments towards the photocatalytic degra-
dation process are available. As already mentioned, the univariate
or OFAT approach ignores the interactions effect of selected photo-
catalytic variables and provides misguided prediction of optimum
photocatalytic degradation efficiency. By considering this, several
researchers have followed the employment of statistical design of
experiments for the photocatalytic treatment process. Having in
mind to give an overview of the most relevant applications, a rep-
resentative number of them are described here, while more relative
studies are depicted at Table 1.
Emilio et al. [28] implemented two different experimental
designs for photocatalytic degradation of nitrilotriacetic acid (NTA).
A two-level full factorial design was applied to evaluate the statisti-
cal meaning of factors and their interactions through multiple-way
analysis of the variance (MANOVA). Four factors were chosen, NTA
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Table 2
Design matrix and results of two-level fractional factorial design (resolution III) with five factors for screening test.

Range and level

Factors Low (−1) Middle (0) High (+1)

pH 4 6 8
Irradiance (W/m2) 520 600 680
Dye concentration (mg/L) 50 100 150
TiO2 (mg/L) 700 1000 1300
H2O2 (mg/L) 1.5 5 8.5

Design matrix

Run pH Irradiance Dye concentration TiO2 H2O2 Degradation %

1 +1 −1 −1 −1 −1 52.36
2 0 0 0 0 0 57.29
3 −1 +1 +1 −1 −1 60.90
4 +1 +1 −1 +1 −1 77.26
5 +1 +1 +1 +1 +1 79.90
6 −1 +1 −1 −1 +1 60.91
7 −1 −1 +1 +1 −1 72.65
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8 0 0 0
9 −1 −1 −1

10 +1 −1 +1

oncentration, pH, TiO2 concentration and time, while 24 exper-
mental runs were applied. Based on MANOVA analysis, pH was

aintained at a constant value for further study. Subsequently, a
oehlert design of 13 runs, having a greater number of levels, was
sed to train an ANN for optimization. From the study it has been
emonstrated that NTA degradation is more efficient at low pH,
hile TiO2/NTA concentration ratio, must be large enough to keep

he reaction under a first-order regime, which provides the highest
eaction rate.

In a recent study by our research group [29], CCD was
mployed to analyze the simultaneous effect of H2O2, Fe(II)
nd TiO2 in the photocatalytic degradation of the pharmaceu-
ical agent imipramine in aqueous solution. Experimental data
ere then fitted using ANNs for optimization. The findings indi-

ated that ANN provides excellent predictive performance while
he influence of each variable studied was assessed, with TiO2
eing the most significant factor, followed by H2O2 and Fe(II).
n another study [9], CCD was used for the optimization of pho-
ocatalytic degradation of the pharmaceutical agent salbutamol
n aqueous TiO2 suspensions. In this design, 11 experiments

ere performed, at which the two variables (TiO2 concentration
nd pH) were codified in five levels with three central points
or statistical validity. The objective of another study [10] was
he photocatalytic degradation of diclofenac using a multivari-
te analysis technique. Experiments were carried out according
o a 22 factorial design with 10 (3 center point) experimental
uns. Selected response was diclofenac residual concentration (%)
fter 30 min of light irradiation while TiO2 concentration and
iclofenac concentration were the input parameters for this case.
rom the response surface plot, the optimum conditions were
ound to be: TiO2 624 mg L−1 and initial diclofenac concentration
f 8.17 mg L−1.

Korbahti and Rouf [30] applied RSM in order to optimize the
iscoloration of toludine blue, in the presence of UV radiation,
sing a heterogeneous hybrid V2O5/TiO2 catalyst. The runs were
esigned in accordance with a D-optimal design and the inde-
endent variables being the dye concentration, pH and catalyst
oncentration. The design was augmented with three replications

n order to evaluate the pure error. The optimum degradation con-
itions were found to be 26.5 mg/20 mL of V2O5/TiO2 catalyst, at pH
.7. In another study by the same research group [31], Rose Bengal
C.I. name is Acid Red 94) photocatalytic degradation was studied,
n the presence of hydrogen peroxide. D-optimal design with six
0 0 56.35
+1 +1 74.66
−1 +1 73.15

replications was used, while dye concentration, pH and H2O2 con-
centration were chosen as input variables. This study suggested
that dye decolorization increased with increasing H2O2 concentra-
tion.

Lin et al. [32] employed CCD based on RSM in the optimiza-
tion of methylparaben photocatalytic degradation. The selected
process parameters were pH, TiO2 loading, oxygen concentration
and light flux. The applied experimental design consisted of 28
experiments divided into three blocks: (a) four variables (n = 4)
at two levels: low (−1) and high (+1), full factorial design 24 (all
possible combinations of codified values +1 and −1); (b) 8 (2n)
axial points located at the center and both extreme levels; (c) four
central replicates of the central points. The most important param-
eter for methylparaben degradation was light flux, whereas TiO2
was the least important among the studied factors. The optimal
experimental conditions for the highest photocatalytic efficiency
of methylparaben estimated by multivariate experimental design
were found at: light flux, 5.8 × 1015 photons s−1 cm−2; pH 9; oxygen
concentration 18 mg L−1; TiO2 loading 2.5 g L1.

Merabet et al. [33] implemented also CCD based on RSM for the
modelization and optimization of the photodegradation of indole in
the presence of TiO2. The CCD design matrix was built by the statis-
tical combinations of the independent variables of UV irradiance,
stirring speed, and indole concentration (20 experimental runs).
The experimental results revealed that the influence of UV irradi-
ance was less important than other factors. Finally, by analyzing
the contour and 3D response plots, 100% of optimized degrada-
tion of target analyte was achieved given by the following values:
UV irradiance, 250 W/m2, stirring speed, 536 rpm and initial indole
concentration, 10.10 mg/L.

Kansal et al. [34] investigated the influence of catalyst (TiO2)
dose, pH and concentration of the oxidant on the photocatalytic
degradation of 2,4,6-trichlorophenol in aqueous solutions. In order
to study the effect of selected variables a CCD was used and the
optimum values were obtained by solving the regression equation
and by analyzing the response surface contour plots.

The photocatalytic degradation of cationic dye Alcian Blue 8 GX
in the presence of TiO2 P25 was investigated by Caliman et al. [35].

To this end, a 23 factorial orthogonal design with 15 experimental
runs was carried out. This study divulged that the irradiation time
had a bigger influence compared to H2O2 concentration and pH.
The gradient method was used for the optimization process. The
optimum degradation of Alcian Blue 8 GX (100%) was possible by
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Table 3
Screening the factors by statistical significance test.

Term Effect Coefficient t P

Mean/interaction 68.974 68.974 293.505 0.002a

Curvature −24.308 −12.154 −23.129 0.028a

pH 3.387 1.694 7.207 0.088
Irradiance 1.537 0.769 3.271 0.189
Dye concentration 5.353 2.676 11.388 0.056
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TiO2 14.288
H2O2 6.362

a Significant at 0.05% level; R2 = 0.9063; Adjusted R2 = 0.71891

he following values: pH 5.26, H2O2 concentration 191.6 mg/L and
ime of irradiation-26.3 min.

Fernández et al. [36] investigated the photocatalysis discol-
ration of Orange II in a photoreactor using TiO2-coated glass
ings as immobilized photocatalyst. In this, factorial design was
mployed with 11 experimental runs (3 center points). H2O2 con-
entration and pH were the studied parameters in order to assess
he degradation efficiency and a polynomial expression model was
eveloped. This study showed that at low pH, the quantity of H2O2
dded did not critically affect the rate of discoloration to attain full
ye decomposition.

Secula et al. [37] examined the photocatalytic decolorization of
simulated dyestuff effluent, containing the azo dye Reactive Black
. A 23 factorial CCD with 16 experiments runs (6 axial points and
center points) were employed for RSM modeling and canonical

nalysis of the response surface. The experimental factors were: the
mount of the TiO2 catalyst and the initial concentrations of the Fe3+

ons and H2O2. By using RSM, 99.30% of color removal was possible
nder different optimal conditions of process parameters, such as,
iO2, 0.458 g L−1, H2O2, 825.3 mg L−1 and Fe3+, 40.243 mg L−1.

The aim of the research by Cho and Zoh [38] was to apply an
xperimental design methodology in the optimization of photocat-
lytic degradation of azo dye (Reactive Red 120). A CCD consisting
f 20 experiments was employed for this study. The factors were:
ye concentration, TiO2 concentration and irradiance and selected
esponses were color removal (%) and TOC removal (%). Finally,
anonical and ridge analysis of RSM was adopted for optimization.

his study showed that irradiance displayed the highest effect for
oth responses. At pH 7.0, the degradation rate of azo dye was low
ompared to acidic and alkaline pH. The model accounted for 100%
f decolorization of target dye with optimized factors of 1.63 g L−1

iO2, 45.2 mg L−1 of reactive dye, and 8.1 mW cm−2 of UV irradi-

able 4
entral composite design (CCD) design matrix and results for CR photocatalytic degradat

Range and level

Factors −˛ Low (−1)

TiO2 (mg/L) 575 700
H2O2 (mg/L) 0.05 1.5

Design matr

Run TiO2 H2O2

1 −1 −1
2 −1 1
3 1 −1
4 1 1
5 −˛ 0
6 +˛ 0
7 0 −˛
8 0 +˛
9 0 0

10 0 0
11 0 0
12 0 0
13 0 0
144 30.399 0.021a

181 13.537 0.047a

ance. For TOC, 67.27% of removal was possible by factors optimized
at 1.92 g L−1 TiO2, 34.7 mg L−1 of reactive dye, and 8.5 mW cm−2 of
UV irradiance.

Other important examples of photocatalytic degradation and
design of experiment are stated briefly in Table 1.

4. Photocatalytic degradation of CR: a case study

4.1. Experimental

Experiments were carried out using TiO2 Degussa P25, as
the photocatalyst. Congo red (CR) [dinatirum-3,3′-[[1,1′-biphenyl]-
4,4′-diylbis(azo)]bis(4-aminonaphthalin-1-sulfonat), (purity 99%)
was purchased from Aldrich and has been used as received.

Irradiation experiments of CR were carried out on stirred
aqueous solutions (50 ml, river water) contained in a cylindrical
quartz glass UV-reactor. Before irradiation, the suspensions were
allowed to stay in the dark for 60 min under stirring, to reach
adsorption equilibrium on the semiconductor surface. Irradiation
was carried out using a Suntest CPS+ apparatus from Heraeus
(Hanau, Germany) equipped with a xenon arc lamp (1500 W)
and special glass filters restricting the transmission of wave-
lengths below 290 nm. Chamber and black panel temperature
were regulated by pressurized air cooling circuit and monitored
using thermocouples supplied by the manufacturer. The temper-
ature of samples did not exceed 20 ◦C using tap water cooling

circuit for the UV-reactor. To remove TiO2 particles the solu-
tion samples were passed through 0.45 �m HA cellulose acetate
membrane filters and were further analyzed by monitoring the
absorbance at 496 nm using UV–VIS spectrophotometer (Jasco, V-
530, Japan).

ion.

Middle (0) High (+1) +˛

1000 1300 1424
5 8.5 9.95

ix

Degradation % (cal) Degradation % (Pre)

65.43 64.94
73.45 75.93
75.41 72.35
90.00 89.91
59.64 60.65
81.26 80.84
73.39 73.25
87.66 88.38
84.24 84.07
85.75 84.07
84.11 84.07
82.18 84.07
84.05 84.07
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Table 5
Sequential model fitting for the CR photocatalytic degradation.

Sequential model sum of squares

Source Sum of squares df Mean square F-Value Prob > F Remark

Mean vs total 81065.07 1 81065.07
Linear vs mean 636.51 2 318.25 9.54 0.0048
2FI vs linear 10.79 1 10.79 0.30 0.5966
Quadratic vs 2FI 312.76 2 156.38 110.65 ≤0.0001 Suggested
Cubic vs quadratic 2.78 2 1.39 0.98 0.4379 Aliased
Residual 7.11 5 1.42 – –

Total 82035.03 13 6310.39 – –

Lack-of-fit tests

Source Sum of squares df Mean square F-Value Prob > F Remark

Linear 327.02 6 54.50 33.93 0.0022
2FI 316.23 5 63.25 39.37 0.0017
Quadratic 3.47 3 1.16 0.72 0.5903 Suggested
Cubic 0.68 1 0.68 0.43 0.5495 Aliased
Pure error 6.43 4 1.61 – –

Model summary statistics

Source Std. dev. R2 Adj. R2 Pre. R2 PRESS Remark

0.5875
0.5565
0.9825
0.9824
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Linear 5.77 0.6562
2FI 5.99 0.6674
Quadratic 1.19 0.9898
Cubic 1.19 0.9927

.2. Design of experiment

At first, two-level fractional factorial design (resolution III) with
ve factors was used in order to eliminate unimportant factors
efore investing time and money in a more elaborate experiment.
ight combinations of all factors and two center points, total 10
xperimental runs were carried out (Table 2). Five factors: pH, irra-
iance, Congo red concentration, TiO2 and H2O2 concentrations
ere chosen, according to our previous experience dealing with the
hotocatalytic processes of micropollutants [9,10,29]. The response
as selected as the degradation percentage of the target molecule

fter 15 min of irradiation. From the analysis of data (Table 3), it can
e seen that only TiO2 and H2O2 have significant impact (p < 0.05)
n CR degradation. The curvature was also significant, indicating
hat a higher-order model or response surface study is needed in
rder to uncover the behavior of the significant factors.

RSM is usually applied following a factorial screening study to
xplore the region of interest of the factors identified by the pre-
eding study. In order to evaluate the broader effects of the two
ignificant factors (i.e. concentrations of TiO2 and H2O2) obtained
rom the screening test, a central composite design (CCD) was

sed as a RSM. The applied CCD was consisted of 13 experiments
N = 2k + 2k + C0 = 22 + 2*2 + 5 = 13 runs, where N is the total number
f experiments required, k is the number of factors 2k is axial runs
nd C0 is center point’s runs) including 5 central points. The dis-

able 6
NOVA and lack-of-fit (LOF) test for response surface quadratic model of CR photocatalyt

Source Sum of squares df Mean sq

Model 960.06 5 192.01
TiO2 407.63 1 407.63
H2O2 228.88 1 228.88
TiO2* H2O2 10.79 1 10.79
TiO2

2 308.72 1 308.72
H2O2

2 18.35 1 18.35
Residual 9.89 7 1.41
Lack-of-fit 3.47 3 1.16
Pure error 6.43 4 1.61
Correction total 969.95 12
0.5875 595.00
0.5565 689.13
0.9825 34.70 Suggested
0.9824 53.84 Aliased

tance of the axial points from the center points is called ˛ (alpha).
In this study, ˛ value was fixed at 1.414 and can be determined by
the multiplication fixed ˛ value with step of factor level and then
summation or subtraction of obtained value from the central point.
For example, the center point value of TiO2 factor is 1000 and step
of level is 300; so −˛ will be 1000 −(300*1.414) and +˛ will be
1000 +(300*1.414).

The design matrix is depicted in Table 4. The step-wise model fit-
ting by Design-Expert software (trail version 7, Stat-Ease, Inc., MN)
was employed in order to find the best fitted model. The software
suggested quadratic model by verifying lack-of-fit and model sum-
mary statistics (Table 5). The model adequacy was further checked
using ANOVA (Table 6). The Model F-value of 135.86 implies the
model is significant. There is only a 0.01% chance that a “Model
F-Value” this large could occur due to noise. Values of “Prob > F”
less than 0.0500 indicate that model terms are significant. In other
words, all factors, in respect of main, interactions and quadratic
terms, are significant. The “Lack-of-Fit F-value” of 0.72 implies that
the Lack-of-Fit is not significant relative to the pure error. There is a
59.03% chance that a “Lack-of-Fit F-value” this large could occur due
to noise. The non-significant lack-of-fit indicates good predictabil-

ity of the model. The “Pred R-Squared” of 0.9642 is in reasonable
agreement with the “Adj R-Squared”of 0.9825 indicating too, a good
predictability of the model. Data analysis permitted to obtain a
semi-empirical expression in terms of coded values of factors (±˛,

ic degradation.

uare F-Value Prob > F Remarks

135.86 <0.0001 Significant
288.43 <0.0001
161.95 <0.0001

7.64 0.0280
218.44 <0.0001

12.99 0.0087

0.72 0.5903 Not significant
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Fig. 1. Plot of actual vs predicted values.

1, 0), given below

Degradation = +84.07 + 7.14 ∗ TiO2 + 5.35 ∗ H2O2

+ 1.64 * TiO2 ∗ H2O2 − 6.66 ∗ TiO2
2

− 1.62 ∗ H2O2
2 (6)

This model explains perfectly the experimental range studied,
s can be seen from the comparison of the graphical representaion
f actual vs predicted values (Fig. 1). This mathematical expres-
ion (Eq. (6)) represents the response factor that is given by the
ercentage of CR degradation obtained from the decrease of its
oncentration, after 15 min of photocatalytic reaction.

Figs. 2 and 3 display the plots of individual (main effects) and
wo-factor interactions effects, respectively, on the CR degradation
ercent. Analyzing Eq. (3) and taking into consideration only the
rst-order effects (Fig. 2), the optimum conditions for the photocat-
lytic degradation of CR seemed to be acquired when TiO2 (x1) and

2O2 (x2) have a high value, since the highest numerical value of CR
egradation (Y) corresponds to such conditions. Moreover, it seems
hat both variables affect, in the same manner, the photocatalytic
egradation of CR displaying a high coefficient.

Fig. 2. Main factors effect for CR p
Fig. 3. Interactions plot for CR photocatalytic degradation.

Nevertheless, an excess of TiO2 (x1), and H2O2 concentration (x2)
in the system is adverse for the reaction, bringing out a negative
influence on the photocatalytic performance (decreased CR degra-
dation efficiency). The negative coefficients of quadratic terms
TiO2

2, and H2O2
2 (as shown by the second-order effect) in the

polynomial expression accounts for this effect.
The overall interaction effects are displayed in Fig. 4; a 3D

representation of the polynomial (Eq. (6)) is obtained from the
experimental data.

The degradation rate increases proportionally to TiO2 concen-
tration (up to 1000 mg/L), as expected, confirming the positive
influence of the increased number of TiO2 active sites on the process
kinetics. At higher catalyst loading a slight decrease of CR degrada-
tion was observed. The availability of active sites increases with
catalyst loading, but the light penetration, and hence, the photoac-
tivated volume of the suspension shrinks. Similar observations have

also been reported in other studies on various organic substances
[64–66].

It is obvious to see (Figs. 2–5) that when the concentration
of hydrogen peroxide increases, the degradation rate smoothly

hotocatalytic degradation.
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ig. 4. 3D response surface graph for CR photocatalytic degradation: TiO2 vs H2O2

oncentration.

ncreases. This positive effect maybe attributed to the inhibition
f electron–hole recombination at the semiconductor surface by
ccepting a photogenerated electron from the conduction band and
hus promoting the charge separation (Eq. (7)):

−
CB + H2O2 → OH− + •OH (7)

The higher reaction rates with increasing H2O2 can also be
ttributed to the increase in the concentration of hydroxyl radicals.
hese radicals are generated by Eq. (7) while on the other hand, per-
xide may produce hydroxyl radical directly (Eq. (8)) or by reaction
ith superoxide anion (Eq. (9)) [67]:

2O2 + hv → 2•OH (8)

2O2 + O2
− → •OH + OH− + O2 (9)

However, when high concentrations of H2O2 are used, the
egradation efficiency diminishes since it may act as •OH scavenger
68] reducing the amount of radicals available to destroy the CR

olecules (Eq. (10)).
2O2 + •OH → HO2
• + H2O (10)

Although other radicals are produced (HO2
•) their oxidation

otential is much lower than the •OH species [3].

Fig. 6. Desirability ramp for n
Fig. 5. Contour plot for CR photocatalytic degradation: TiO2 vs H2O2 concentration.

4.3. Optimization

After performing a screening of factors and their interactions,
the response surface analysis was carried out. Optimization was
performed afterwards on the basis of desirability function in order
to find the optimal conditions for the degradation of CR.

The numerical optimization of the software has been chosen in
order to locate the specific point that maximizes the desirability
function. The desired goal was selected by adjusting the weight
or importance that might alter the characteristics of a goal. The
goal fields for response have five options: none, maximum, min-

imum, target and within range. The criteria for the optimization
of all studied factors in correspondence with degradation % are
shown in Table 7. From the ANOVA (Table 6), it has been seen
that the main effects of TiO2 and H2O2 were significant, therefore,

umerical optimization.
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Table 7
Optimization of the individual responses (di) in order to obtain the overall desirability response (D).

Name Goal Lower limit Upper limit Lower weight Upper weight Importance
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t

TiO2 Is in range 700 1300
H2O2 Is in range 1.5 8
Degradation % Maximize 59.64 90

hese factors were assigned as ‘within range’ with corresponding
importance’ 3. As higher degradation % is usually preferred for
uch studies, ‘importance’ 5 was assigned as the maximum goal.
he lower limit and upper limit values of all responses are taken
rom the CCD design levels. Our main objective was to maximize
he degradation yield with recalculating all responsible factors by
sing desirability functions. By using all above described settings
nd boundaries, the software optimized 90.22% degradation of CR
ith calculating the optimized model factors of TiO2 at 1163 mg/L

nd H2O2 at 8.1 mg/L, respectively (Fig. 6). Finally, for their valida-
ion, duplicate confirmatory experiments were conducted using the
ptimized parameters for CR degradation (89.66%). The results are
losely related with the data obtained from optimization analysis
sing desirability function, indicating that CCD design in combina-
ion with desirability function could be effectively used to optimize
he degradation of CR from aqueous solution.

Our results are in agreement with a recent study by Erdemoglu
t al. [69]. Photodegradation of Congo red in aqueous solutions
y hydrothermally synthesized anatase TiO2 with nanocrystalline
ize (8 nm) has shown that nano-TiO2 catalysts can easily degrade
0 mg L−1 CR dye after visible irradiation for 30 min. A similar study
evealed that the shape of TiO2 nanocrystals significantly affected
he photocatalytic activities of CR [70].

TiO2/UV-based photocatalysis was not only able to decolorize
ut also to fully oxidize the dyes, giving rise to a complete mineral-

zation of carbon into CO2 [71]. Other advanced oxidation processes
s UV/H2O2, resulted in poor mineralization efficiency and needed
ong irradiation periods [72].

.4. Toxicity assessment
The toxicity of CR solution and of aqueous samples collected
t different irradiation times was examined by Microtox Model
00 Toxicity Analyzer. The detailed procedure of analysis was
escribed elsewhere [29]. The initial toxicity of CR solution (0 h

ig. 7. Inhibition (%) of the luminescence of bacteria Vibrio fischeri as a function of
he photocatalytic treatment time.
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1 1 3
1 1 3
1 1 5

of irradiation) showed an inhibition of 76%. As the photocatalytic
treatment proceeds, the toxicity of the solution rapidly decreases
and reaches a value of 4% inhibition, at 15 min (Fig. 7). Thereafter,
inhibition % increases (60 min, inhibition of 48%) but remains lower
compared to CR initial toxicity. These observations clearly demon-
strate that transformation products, more toxic than CR are formed,
while synergistic effects among them are also considered. At higher
irradiation times, the toxicity is decreased until complete detoxifi-
cation of the irradiated solution is achieved.

5. Conclusion

Response surface methodology (RSM) is nowadays, a promising
as well as a powerful tool for multivariate optimization through
sequential experimentation. Several researchers have already been
using various RSM approaches to explain optimization process.
This review article explicates the RSM theory, and provides sev-
eral applications to highlight the importance of DOE in the field
of photocatalytic processes. Finally, an example of CR dye photo-
catalytic degradation with application of multivariate optimization
again suggests that RSM approach is applicable as a chemometric
tool that can provide systematic satisfactory results.
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silla, Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO
suspensions, Catal. Today, in press.

63] J. Nieto, J. Freer, D. Contreras, R.J. Candal, E.E. Sileo, H.D. Mansilla, Photocat-
alyzed degradation of flumequine by doped TiO2 and simulated solar light, J.
Hazard. Mater. 155 (2008) 45–50.

64] K. Nohara, H. Hidaka, E. Pelizzetti, N. Serpone, Processes of formation of NH3+

and NO3− ions during the photocatalyzed oxidation of N-containing com-
pounds at the titania/water interface, J. Photochem. Photobiol. A: Chem. 102
(1997) 265–272.

65] C.M. So, M.Y. Cheng, J.C. Yu, P.K. Wong, Degradation of azo dye Procion Red
MX-5B by photocatalytic oxidation, Chemosphere 46 (2002) 905–912.

66] K. Nohara, H. Hidaka, E. Pelizzetti, N. Serpone, Dependence on chemical struc-
ture of the production of NH4+ and/or NO3− ions during the photocatalyzed
oxidation of nitrogen-containing substances at the titania/water interface,
Catal. Lett. 36 (1996) 115–118.

67] A. Duran, J.M. Monteagudo, Solar photocatalytic degradation of reactive blue 4
using a Fresnel lens, Water Res. 41 (2007) 690–698.

68] J.M. Monteagudo, M. Carmona, A. Duran, Photo-Fenton-assisted ozonation of
p-Coumaric acid in aqueous solution, Chemosphere 60 (2005) 1103–1110.

69] S. Erdemoglu, S.K. Aksub, F. Sayılkan, B. Izgi, M. Asilturk, H. Sayılkan, F. Frimmel,
S. Gucer, Photocatalytic degradation of Congo red by hydrothermally syn-
thesized nanocrystalline TiO2 and identification of degradation products by
LC–MS, J. Hazard. Mater. 155 (2008) 469–476.

70] R.K. Wahi, W.W. Yu, Y. Liu, M.L. Mejia, J.C. Falkner, W. Nolte, V.L. Colvin, Pho-
todegradation of Congo Red catalyzed by nanosized TiO2, J. Mol. Catal. A: Chem.
242 (2005) 48–56.

71] H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann,

Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange
G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania,
Appl. Catal. B: Environ. 39 (2002) 75–90.

72] U. Balia, E. Catalkaya, F. Sengul, Photodegradation of reactive black 5, direct red
28 and direct yellow 12 using UV, UV/H2O2 and UV/H2O2/Fe2+: a comparative
study, J. Hazard. Mater. B114 (2004) 159–166.

http://dx.doi.org/10.1016/j.cej.2009.03.021
http://dx.doi.org/10.1016/j.cattod.2008.12.031

	Photocatalytic degradation using design of experiments: A review and example of the Congo red degradation
	Introduction
	Building a response surface methodology
	Factor screening experiments
	The path of steepest ascent/descent
	Choice of design for RSM
	Full three level factorial design
	Central composite design (CCD)
	Doehlert design
	Box-Behnken design

	Sequential mathematical model fitting
	Optimization
	Confirmation study

	Applications of DOE in photocatalytic process
	Photocatalytic degradation of CR: a case study
	Experimental
	Design of experiment
	Optimization
	Toxicity assessment

	Conclusion
	References


